香港中文大學
The Chinese University of Hong Kong

CSCI2510 Computer Organization Tutorial 07：Subroutine in MASM

Bentian Jiang

btjiang＠cse．cuhk．edu．hk

Outline

- Subroutine Revisited

- Stack Frame
- Greatest Common Divisor

Subroutine Review

- Basic concepts:
- When a program branches to a subroutine we say that it is calling the subroutine.
- After a subroutine calling, the subroutine is said to return to the program that called it.
- Continuing immediately after the instruction that called the subroutine.
- Provision must be made for returning to
the appropriate location.
- the contents of the PC must be saved by the call instruction to enable correct return to the calling program

Why Subroutine?

- Divide/Decrease and conquer
- Reuse codes
- Make variable namespace clean

Divide/Decrease and conquer

- Philosophy of multi-branched recursion
- A divide/decrease and conquer algorithm works by
- Divide: recursively breaking down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly.
- Conquer: independently solve each sub-problem.
- Combine (for divide and conquer): the solutions to the sub-problems are combined to give a solution to the original problem.
- E.g.: (1) Binary search (2) Merge sort (3) Greatest common divisor, etc...

Examples

- Binary search: decrease and conquer algorithm

Ref: https://www.topcoder.com/blog/binary-stride-a-variant-on-binary-search/

Examples

- Merge sort: divide and conquer algorithm

there is only one part left: the sorted list, merged together!

Ref: https://medium.com/basecs/making-sense-of-merge-sort-part-1-49649a143478

Stack Frame Revisited

- Think about we want to implement following function:

- Observation: the return address needed for the first return is the last one generated in the nested calls.
- Last-in-first-out (LIFO) order -> Stack

Stack Frame Revisited

- Think about we want to implement following function:

top
func1()
main

bottom

- Observation: the return address needed for the first return is the last one generated in the nested calls.
- Last-in-first-out (LIFO) order -> Stack

Stack Frame Revisited

- Processor stack is useful to store subroutine linkage

Main program

	\vdots	
$\mathbf{2 0 0 0}$	PUSH	PARAM2
$\mathbf{2 0 0 4}$	PUSH	offset PARAM1
$\mathbf{2 0 0 8}$	CALL	SUB1
2012	POP	[RESULT]
$\mathbf{2 0 1 6}$	ADD	ESP, 4
$\mathbf{2 0 2 0}$	next instruction	
	\vdots	

First subroutine

$\mathbf{2 1 0 0}$	SUB1:	PUSH	EBP	Save frame pointer register
$\mathbf{2 1 0 4}$	MOV	EBP, ESP	Load the frame pointer	
$\mathbf{2 1 0 8}$	PUSH	R0, R1, R2, R3	Save registers (Abbreviated!)	
\ldots		MOV	R0, 8[EBP]	Get first parameter.
		MOV	R1, 12[EBP]	Get secondparameter.
2160		push	PARAM3	Place a parameter on stack.
2164		POP	RUB2	
		\vdots		Pop SUB2result into R2.
	P1:	MOV	8[EBP], R3	Place answer on stack.
		POP	R3, R2, R1, R0	
		POP	EBP	
		RET		

Second subroutine
3000 SUB2: PUSH EBP
$\begin{array}{lll}\text { PUSH } & \text { R0, R1 } & \text { Save registers (Abbreviated!) }\end{array}$
MOV R0, 8[EBP]
\vdots

MOV 8[EBP], R1 Place SUB2 result on stack.
POP R1, R0
POP EBP
RET

Standard form!

Stack Frame Revisited

Stack Frame Revisited

- Conservation of stack level:
- The major concern is the value of ESP, it is always modified by PUSH and POP instructions.
- Preservation of registers' contents
- Save and restore the registers' contents before and after they are used for other purposes
- E.g. in a procedure call

Greatest Common Divisor

- In mathematics, the greatest common divisor (GCD) of two or more integers, when at least one of them is not zero, is the largest positive integer that divides the numbers without a remainder.
- E.g., $\operatorname{GCD}(60,36)=12$.
- You can definitely enumerate all divisors of each number and then pick up the largest common one, but it's not efficient enough.

Euclid's Algorithm

- A simple way to find GCD is to factorize both numbers and multiply common factors.

$$
\begin{aligned}
36 & =2 \times 2 \times 3 \times 3 \\
60 & =2 \times 2 \times 3 \times 5 \\
G C D & =\text { Multiplication of common factors } \\
& =2 \times 2 \times 3 \\
& =12
\end{aligned}
$$

- Recursive algorithm:
$-\operatorname{gcd}(\mathrm{a}, 0)=\mathrm{a}$
$-\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$
- E.g., $\operatorname{gcd}(48,18)=\operatorname{gcd}(18,12)=\operatorname{gcd}(12,6)=\operatorname{gcd}(6,0)=6$
- Question: what is the implementation in $\mathrm{C} / \mathrm{C}++$?

Euclid's Algorithm

- Euclid's Algorithm in C/C++

```
\squareint GreatestCommonDivisor(int a, int b)
{
    if (a < b)
    {
        int temp = a;
        a = b;
        b = temp;
    }
    if (b == 0)
    return a;
    else
    return GreatestCommonDivisor(b, a % b);
}
```

- 4 parts: (1) main func of gcd (2) func of check order (3) func of divide recursively (4) how to end

Euclid's Algorithm in MASM

- Complete the Euclid's algorithm in MASM:
- Hints:
- Complete (2) (3) (4) as separate functions
- for "div src"
- EAX = EDX:EAX / src
- EDX = EDX:EAX \% src

```
gcd proc
    push ebp
    mov ebp, esp
    push ebx
    push eax
    mov eax, 8[ebp]
    mov ebx, 12[ebp]
    ; Fill here!
    ; Put the result in ecx
return:
    pop eax
    pop ebx
    pop ebp
    ret
gcd endp
```


Euclid＇s Algorithm in MASM

```
gcd proc
    push ebp
    mov ebp, esp
    push ebx
    push eax
    mov eax, 8[ebp]
    mov ebx, 12[ebp]
```

order:
cmp eax, ebx
jge divide
mov ecx, eax ; a < b
mov eax, ebx
mov ebx, ecx

```
divide:
    ; a >= b
    cmp ebx, 0
    je base
```

```
xor edx, edx
    idiv ebx ; edx = a % b
    push ebx
    push edx
    call gcd
    add esp, 8
    jmp return
```

base:
mov ecx, eax
return:
pop eax
pop ebx
pop ebp
ret
gcd endp

Euclid's Algorithm in MASM

- Actually there is a direct implementation of GCD, why still using subroutine?

```
start:
    invoke crt_printf, addr PrintFormat1
    invoke crt_scanf, addr ScanFormat, addr Int1
    invoke crt_printf, addr PrintFormat2
    invoke crt_scanf, addr ScanFormat, addr Int2
    mov eax, Int1
    mov ebx, Int2
```

order:
cmp eax, ebx
jge divide
mov ecx, eax ; a < b
mov eax, ebx
mov ebx, ecx
divide: $\quad ; \quad \mathrm{a}>=\mathrm{b}$
cmp ebx, 0
je output
xor edx, edx
idiv ebx ; edx = a \% b
mov eax, ebx $; a=b$
mov ebx, edx \quad b $=a \% b$
jmp order
output:
invoke crt_printf, addr PrintFormat3, Int1, Int2, eax invoke ExitProcess, NULL
end start

Euclid's Algorithm in MASM

- Benefits of subroutine/function again:
- Divide and conquer
- Reuse codes
- Make variable namespace clean
- Exercise: use the "subroutine" we just define to get the GCD of 4 integers.
- $\operatorname{GCD}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\operatorname{GCD}(\mathrm{a}, \operatorname{GCD}(\mathrm{b}, \operatorname{GCD}(\mathrm{c}, \mathrm{d})))$

Summary

- Subroutine Revisited
- Stack Frame
- Greatest Common Divisor

